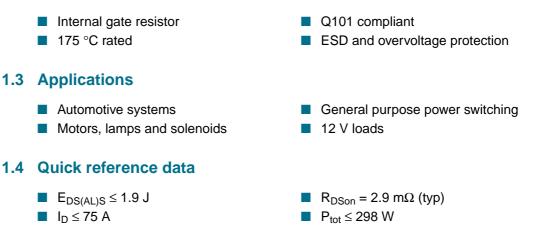
N-channel TrenchPLUS standard level FET

Rev. 02 — 26 September 2007


**Product data sheet** 

### 1. Product profile

### 1.1 General description

N-channel enhancement mode power Field-Effect Transistor (FET) in a plastic package using NXP High-Performance Automotive (HPA) TrenchMOS technology, featuring very low on-state resistance, internal gate resistor, ElectroStatic Discharge (ESD) protection diodes and clamping diodes that are guaranteed to prevent MOSFET avalanching.

#### 1.2 Features



## 2. Pinning information

| Table | 1. Pinning                            |                    |        |
|-------|---------------------------------------|--------------------|--------|
| Pin   | Description                           | Simplified outline | Symbol |
| 1     | gate (G)                              |                    | _      |
| 2     | drain (D)                             | mb                 | D      |
| 3     | source (S)                            |                    |        |
| mb    | mounting base; connected to drain (D) |                    |        |

1 2 3 SOT78C (TO-220)

00



S

sym094

N-channel TrenchPLUS standard level FET

## 3. Ordering information

| Table 2.         Ordering information |         |                                                                          |         |  |
|---------------------------------------|---------|--------------------------------------------------------------------------|---------|--|
| Type number                           | Package |                                                                          |         |  |
|                                       | Name    | Description                                                              | Version |  |
| BUK7L3R3-34BRC                        | TO-220  | plastic single-ended package; heatsink mounted; 1 mounting hole; 3 leads | SOT78C  |  |

N-channel TrenchPLUS standard level FET

## 4. Limiting values

#### Table 3. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).

| Symbol               | Parameter                                       | Conditions                                                                                                                                                               | Min          | Max  | Unit |
|----------------------|-------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------|------|
| V <sub>DS</sub>      | drain-source voltage                            |                                                                                                                                                                          | <u>[1]</u> _ | 34   | V    |
| V <sub>DGR</sub>     | drain-gate voltage (DC)                         | $R_{GS} = 20 \text{ k}\Omega$                                                                                                                                            | [1] _        | 34   | V    |
| V <sub>GS</sub>      | gate-source voltage                             |                                                                                                                                                                          | -            | ±20  | V    |
| I <sub>D</sub>       | drain current                                   | $T_{mb}$ = 25 °C; $V_{GS}$ = 10 V; see <u>Figure 2</u> and <u>3</u>                                                                                                      | [2] _        | 218  | А    |
|                      |                                                 |                                                                                                                                                                          | [3][4] _     | 75   | А    |
|                      |                                                 | $T_{mb}$ = 100 °C; $V_{GS}$ = 10 V; see <u>Figure 2</u>                                                                                                                  | [3] _        | 75   | А    |
| I <sub>DM</sub>      | peak drain current                              | $T_{mb}$ = 25 °C; pulsed; $t_p \le 10 \ \mu s$ ; see Figure 3                                                                                                            | -            | 872  | А    |
| P <sub>tot</sub>     | total power dissipation                         | T <sub>mb</sub> = 25 °C; see <u>Figure 1</u>                                                                                                                             | -            | 298  | W    |
| I <sub>DG(CL)</sub>  | drain-gate clamping current                     | $t_p = 5 ms; \ \delta = 0.01$                                                                                                                                            | -            | 50   | mΑ   |
| I <sub>GS(CL)</sub>  | gate-source clamping current                    | continuous                                                                                                                                                               | -            | 10   | mΑ   |
|                      |                                                 | $t_p = 5 ms; \delta = 0.01$                                                                                                                                              | -            | 50   | mA   |
| T <sub>stg</sub>     | storage temperature                             |                                                                                                                                                                          | -55          | +175 | °C   |
| Tj                   | junction temperature                            |                                                                                                                                                                          | -55          | +175 | °C   |
| Source-d             | rain diode                                      |                                                                                                                                                                          |              |      |      |
| I <sub>DR</sub>      | reverse drain current                           | T <sub>mb</sub> = 25 °C                                                                                                                                                  | [2] _        | 218  | А    |
|                      |                                                 |                                                                                                                                                                          | [3][4] _     | 75   | А    |
| I <sub>DRM</sub>     | peak reverse drain current                      | $T_{mb}$ = 25 °C; pulsed; $t_p \le 10 \ \mu s$                                                                                                                           | -            | 872  | А    |
| Avalanch             | e ruggedness                                    |                                                                                                                                                                          |              |      |      |
| E <sub>DS(AL)S</sub> | non-repetitive drain-source<br>avalanche energy | unclamped inductive load; I <sub>D</sub> = 75 A; V <sub>DS</sub> $\leq$ 34 V; R <sub>GS</sub> = 50 $\Omega$ ; V <sub>GS</sub> = 10 V; starting at T <sub>j</sub> = 25 °C | -            | 1.9  | J    |
| E <sub>DS(AL)R</sub> | repetitive drain-source avalanche energy        |                                                                                                                                                                          | <u>[5]</u>   | -    | J    |
| V <sub>esd</sub>     | electrostatic discharge voltage                 | all pins; human body model; R = 1.5 k $\Omega$                                                                                                                           |              |      |      |
|                      |                                                 | C = 100 pF                                                                                                                                                               | -            | 8    | kV   |
|                      |                                                 | C = 250 pF                                                                                                                                                               | -            | 8    | kV   |

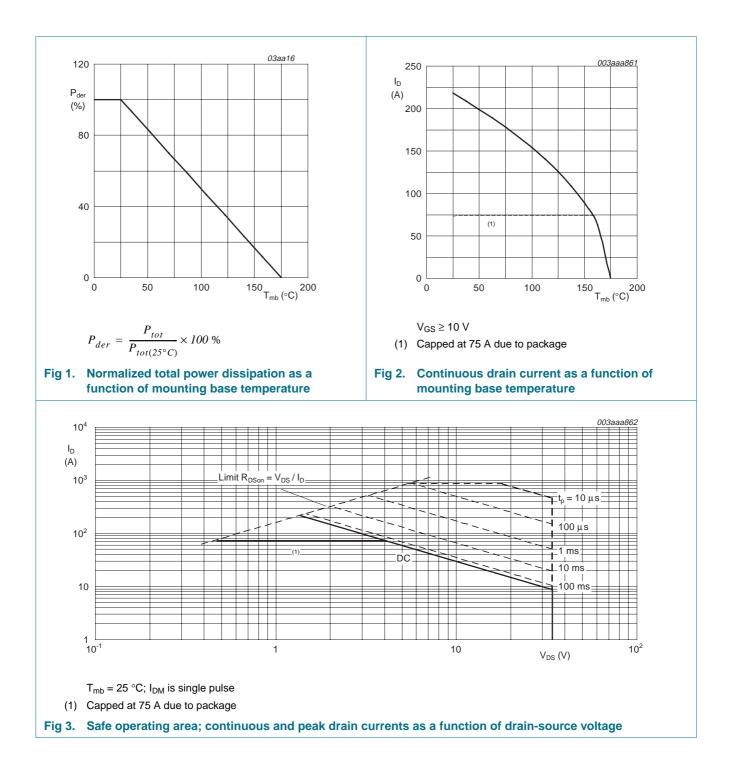
[1] Voltage is limited by clamping.

[2] Current is limited by power dissipation chip rating.

[3] Continuous current is limited by package.

[4] Refer to literature 9397 750 12572 for further information.

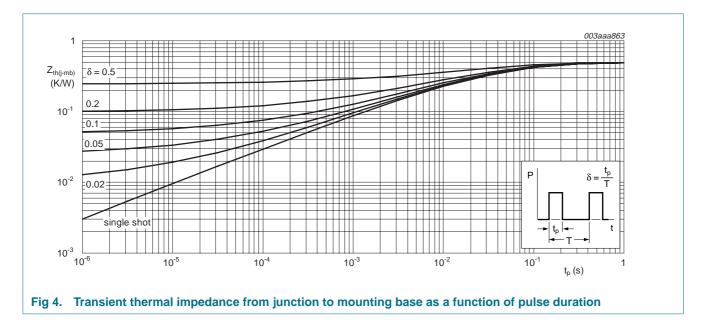
[5] Maximum value not quoted. Refer to application note AN10273 for further information.


a) Repetitive rating defined in Figure 14.

b) Single-pulse avalanche rating limited by a  $T_{j(max)}$  of 175  $^\circ\text{C}.$ 

c) Repetitive avalanche rating limited by an average junction temperature of 170 °C.

# BUK7L3R3-34BRC


#### N-channel TrenchPLUS standard level FET



**N-channel TrenchPLUS standard level FET** 

## 5. Thermal characteristics

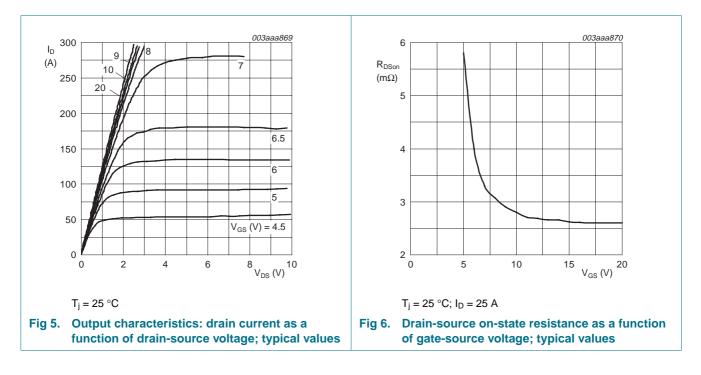
| Table 4.              | Thermal characteristics                          |            |     |     |     |      |
|-----------------------|--------------------------------------------------|------------|-----|-----|-----|------|
| Symbol                | Parameter                                        | Conditions | Min | Тур | Max | Unit |
| R <sub>th(j-a)</sub>  | thermal resistance from junction to ambient      |            |     | 60  | -   | K/W  |
| R <sub>th(j-mb)</sub> | thermal resistance from junction to mounting bas | se         | -   | -   | 0.5 | K/W  |



N-channel TrenchPLUS standard level FET

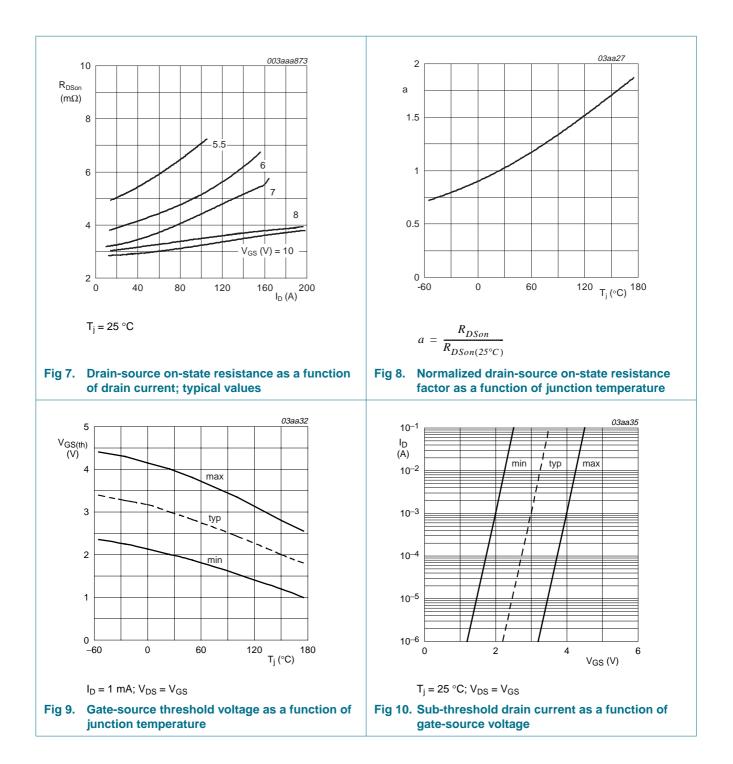
## 6. Characteristics

| Symbol               | Parameter                        | Conditions                                                                                              | Min          | Тур | Max  | Unit |
|----------------------|----------------------------------|---------------------------------------------------------------------------------------------------------|--------------|-----|------|------|
| Static cha           | aracteristics                    |                                                                                                         |              |     |      |      |
| V <sub>(BR)DG</sub>  | drain-gate breakdown voltage     | $I_D = 2 \text{ mA}; V_{GS} = 0 \text{ V}$                                                              |              |     |      |      |
|                      |                                  | $T_j = 25 \ ^{\circ}C$                                                                                  | 34           | -   | 45   | V    |
|                      |                                  | $T_j = -55 \ ^{\circ}C$                                                                                 | 34           | -   | 45   | V    |
| V <sub>DS(CL)</sub>  | drain-source clamping<br>voltage | $I_{GD(CL)} = -2 \text{ mA}; I_D = 1 \text{ A}; \text{ see } \frac{\text{Figure } 17}{\text{ and } 18}$ | -            | 41  | -    | V    |
| V <sub>GS(th)</sub>  | gate-source threshold voltage    | $I_D = 1 \text{ mA}; V_{DS} = V_{GS}; \text{ see } \underline{Figure 9} \text{ and } \underline{10}$    |              |     |      |      |
|                      |                                  | T <sub>j</sub> = 25 °C                                                                                  | 2            | 3   | 4    | V    |
|                      |                                  | T <sub>j</sub> = 175 ℃                                                                                  | 1            | -   | -    | V    |
|                      |                                  | $T_j = -55 \ ^{\circ}C$                                                                                 | -            | -   | 4.4  | V    |
| I <sub>DSS</sub>     | drain leakage current            | $V_{DS} = 16 V; V_{GS} = 0 V$                                                                           |              |     |      |      |
|                      |                                  | T <sub>j</sub> = 25 °C                                                                                  | -            | 0.1 | 0.6  | μΑ   |
|                      |                                  | T <sub>j</sub> = 150 °C                                                                                 | -            | 5   | 50   | μΑ   |
|                      |                                  | T <sub>j</sub> = 175 °C                                                                                 | -            | 30  | 250  | μΑ   |
| V <sub>(BR)GSS</sub> | gate-source breakdown voltage    | $I_G = \pm 1 \text{ mA}; -55 \text{ °C} < T_j < +175 \text{ °C}$                                        | 20           | 22  | -    | V    |
| I <sub>GSS</sub>     | gate leakage current             | $V_{GS} = \pm 10 \text{ V};  V_{DS} = 0 \text{ V}$                                                      |              |     |      |      |
|                      |                                  | T <sub>j</sub> = 25 °C                                                                                  | -            | 5   | 1000 | nA   |
|                      |                                  | T <sub>j</sub> = 175 °C                                                                                 | -            | -   | 50   | μΑ   |
|                      |                                  | $V_{GS} = \pm 16 \text{ V}; V_{DS} = 0 \text{ V}$                                                       |              |     |      |      |
|                      |                                  | T <sub>j</sub> = 175 °C                                                                                 | -            | -   | 150  | μΑ   |
| $R_{DSon}$           | drain-source on-state            | $V_{GS}$ = 10 V; $I_{D}$ = 25 A; see Figure 7 and 8                                                     |              |     |      |      |
|                      | resistance                       | $T_j = 25 \ ^{\circ}C$                                                                                  | <u>[1]</u> _ | 2.9 | 3.3  | mΩ   |
|                      |                                  | T <sub>j</sub> = 175 °C                                                                                 | -            | -   | 6.3  | mΩ   |
| R <sub>G</sub>       | gate resistance                  |                                                                                                         | -            | 11  | -    | Ω    |


#### N-channel TrenchPLUS standard level FET

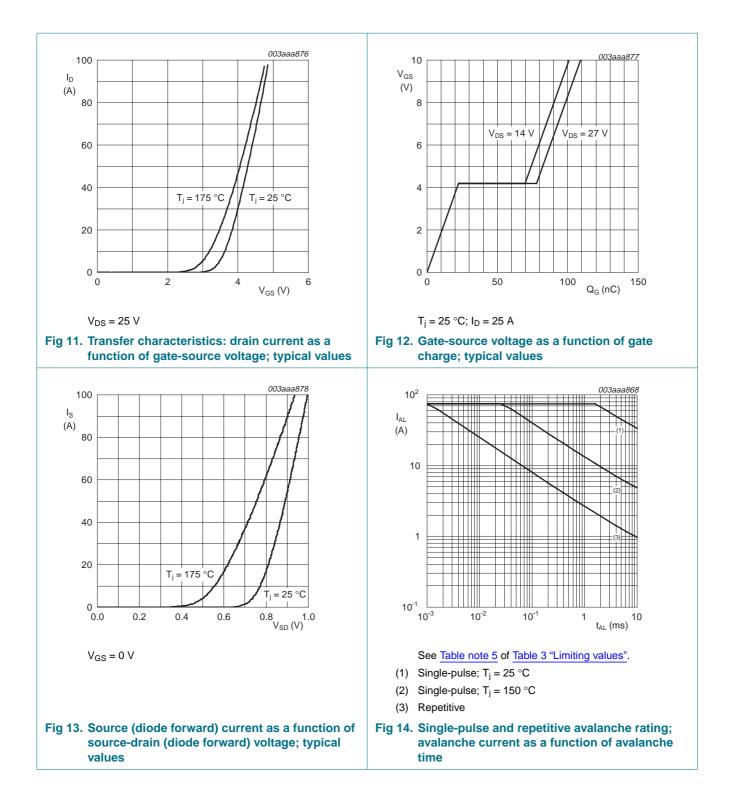
#### Table 5. Characteristics ...continued

 $T_i = 25 \circ C$  unless otherwise specified.


| Symbol              | Parameter                    | Conditions                                                                            | Min   | Тур  | Max  | Unit |
|---------------------|------------------------------|---------------------------------------------------------------------------------------|-------|------|------|------|
| Dynamic             | characteristics              |                                                                                       |       |      |      |      |
| Q <sub>G(tot)</sub> | total gate charge            | $I_D = 25 \text{ A}; V_{DS} = 27 \text{ V}; V_{GS} = 10 \text{ V};$                   | -     | 109  | -    | nC   |
| $Q_{GS}$            | gate-source charge           | see Figure 12                                                                         | -     | 22   | -    | nC   |
| $Q_{GD}$            | gate-drain charge            |                                                                                       | -     | 55   | -    | nC   |
| C <sub>iss</sub>    | input capacitance            | $V_{GS} = 0 \text{ V}; V_{DS} = 25 \text{ V}; f = 1 \text{ MHz};$<br>see Figure 16    | -     | 5050 | 6730 | pF   |
| C <sub>oss</sub>    | output capacitance           |                                                                                       | -     | 1300 | 1560 | pF   |
| C <sub>rss</sub>    | reverse transfer capacitance |                                                                                       | -     | 510  | 690  | pF   |
| t <sub>d(on)</sub>  | turn-on delay time           | $V_{DS}$ = 30 V; $R_L$ = 1.2 $\Omega;$ $V_{GS}$ = 10 V; $R_G$ = 10 $\Omega$           | -     | 69   | -    | ns   |
| t <sub>r</sub>      | rise time                    |                                                                                       | -     | 150  | -    | ns   |
| t <sub>d(off)</sub> | turn-off delay time          |                                                                                       | -     | 290  | -    | ns   |
| t <sub>f</sub>      | fall time                    |                                                                                       | -     | 210  | -    | ns   |
| L <sub>D</sub>      | internal drain inductance    | measure from drain lead 6 mm from package to center of die                            | - 4.5 | 4.5  | -    | nH   |
|                     |                              | measure from contact screw on mounting base to center of die                          | -     | 3.5  | -    | nH   |
| L <sub>S</sub>      | internal source inductance   | measure from source lead from package to<br>source bonding pad                        | -     | 7.5  | -    | nH   |
| Source-d            | rain diode                   |                                                                                       |       |      |      |      |
| $V_{SD}$            | source-drain voltage         | $I_S = 25 \text{ A}; V_{GS} = 0 \text{ V}; \text{ see } \frac{\text{Figure } 13}{13}$ | -     | 0.85 | 1.2  | V    |
| t <sub>rr</sub>     | reverse recovery time        | $I_{S} = 20 \text{ A}; \text{ d}I_{S}/\text{d}t = -100 \text{ A}/\mu\text{s};$        | -     | 93   | -    | ns   |
| Q <sub>r</sub>      | recovered charge             | $V_{GS} = 0 V; V_{R} = 30 V$                                                          | -     | 65   | -    | nC   |

[1]  $R_{DSon}$  measured at 1.5 mm away from the plastic body.



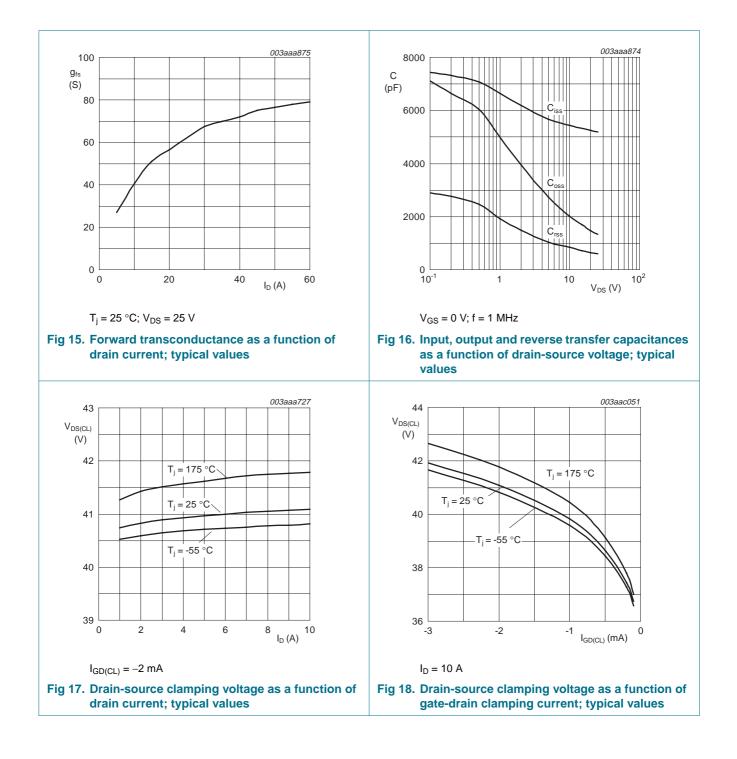

# BUK7L3R3-34BRC

#### N-channel TrenchPLUS standard level FET



## BUK7L3R3-34BRC

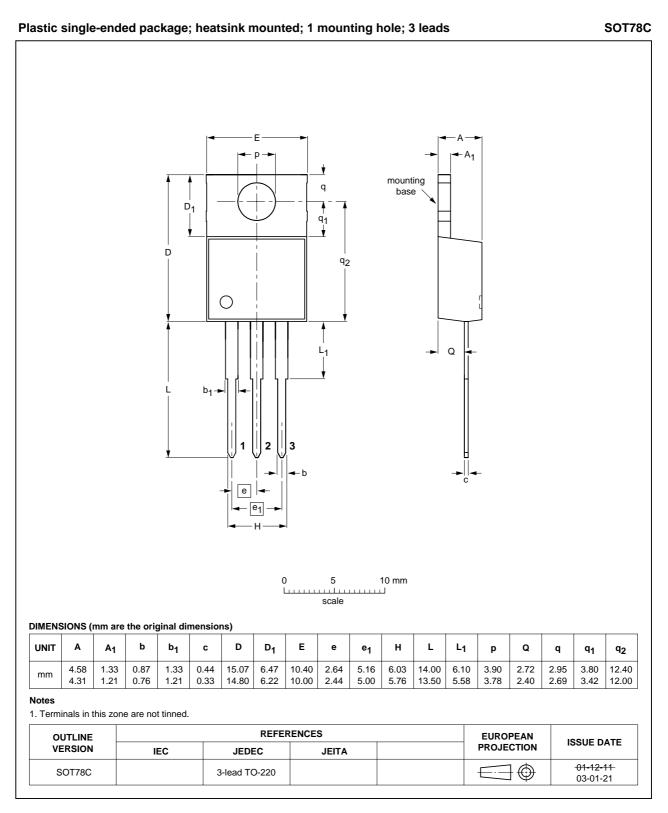
#### N-channel TrenchPLUS standard level FET




Product data sheet

BUK7L3R3-34BRC 2

# BUK7L3R3-34BRC


#### N-channel TrenchPLUS standard level FET



BUK7L3R3-34BRC\_2

#### N-channel TrenchPLUS standard level FET

### 7. Package outline



#### Fig 19. Package outline SOT78C (TO-220)

N-channel TrenchPLUS standard level FET

## 8. Revision history

| Table 6.Revision h | istory                                                                   |                                                      |                |                  |
|--------------------|--------------------------------------------------------------------------|------------------------------------------------------|----------------|------------------|
| Document ID        | Release date                                                             | Data sheet status                                    | Change notice  | Supersedes       |
| BUK7L3R3-34BRC_2   | 20070926                                                                 | Product data sheet                                   | -              | BUK7L3R3-34BRC_1 |
| Modifications:     | <ul> <li><u>Table 5</u>: updat</li> <li><u>Table 5</u>: addec</li> </ul> | ed maximum value of drain I<br>1 <u>Table note 1</u> | eakage current |                  |
| BUK7L3R3-34BRC_1   | 20070515                                                                 | Product data sheet                                   | -              | -                |

N-channel TrenchPLUS standard level FET

## 9. Legal information

#### 9.1 Data sheet status

| Document status <sup>[1][2]</sup> | Product status <sup>[3]</sup> | Definition                                                                            |
|-----------------------------------|-------------------------------|---------------------------------------------------------------------------------------|
| Objective [short] data sheet      | Development                   | This document contains data from the objective specification for product development. |
| Preliminary [short] data sheet    | Qualification                 | This document contains data from the preliminary specification.                       |
| Product [short] data sheet        | Production                    | This document contains the product specification.                                     |

[1] Please consult the most recently issued document before initiating or completing a design.

[2] The term 'short data sheet' is explained in section "Definitions".

[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

#### 9.2 Definitions

**Draft** — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

### 9.3 Disclaimers

**General** — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

**Right to make changes** — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or malfunction of a NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

**Applications** — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) may cause permanent damage to the device. Limiting values are stress ratings only and operation of the device at these or any other conditions above those given in the Characteristics sections of this document is not implied. Exposure to limiting values for extended periods may affect device reliability.

Terms and conditions of sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at <a href="http://www.nxp.com/profile/terms">http://www.nxp.com/profile/terms</a>, including those pertaining to warranty, intellectual property rights infringement and limitation of liability, unless explicitly otherwise agreed to in writing by NXP Semiconductors. In case of any inconsistency or conflict between information in this document and such terms and conditions, the latter will prevail.

**No offer to sell or license** — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

#### 9.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

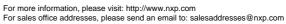
TrenchMOS - is a trademark of NXP B.V.

## **10. Contact information**

For additional information, please visit: <u>http://www.nxp.com</u>

For sales office addresses, send an email to: salesaddresses@nxp.com

#### **N-channel TrenchPLUS standard level FET**


## **11. Contents**

| 1   | Product profile 1         |
|-----|---------------------------|
| 1.1 | General description       |
| 1.2 | Features                  |
| 1.3 | Applications 1            |
| 1.4 | Quick reference data1     |
| 2   | Pinning information 1     |
| 3   | Ordering information 2    |
| 4   | Limiting values 3         |
| 5   | Thermal characteristics 5 |
| 6   | Characteristics 6         |
| 7   | Package outline 11        |
| 8   | Revision history 12       |
| 9   | Legal information 13      |
| 9.1 | Data sheet status 13      |
| 9.2 | Definitions               |
| 9.3 | Disclaimers               |
| 9.4 | Trademarks 13             |
| 10  | Contact information 13    |
| 11  | Contents 14               |

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© NXP B.V. 2007.

All rights reserved.



Date of release: 26 September 2007 Document identifier: BUK7L3R3-34BRC\_2

